61 research outputs found

    VR-PMS: a new approach for performance measurement and management of industrial systems

    Get PDF
    A new performance measurement and management framework based on value and risk is proposed. The proposed framework is applied to the modelling and evaluation of the a priori performance evaluation of manufacturing processes and to deciding on their alternatives. For this reason, it consistently integrates concepts relevant to objectives, activity, and risk in a single framework comprising a conceptual value/risk model, and it conceptualises the idea of value- and risk based performance management in a process context. In addition, a methodological framework is developed to provide guidelines for the decision-makers or performance evaluators of the processes. To facilitate the performance measurement and management process, this latter framework is organized in four phases: context establishment, performance modelling, performance assessment, and decision-making. Each phase of the framework is then instrumented with state of-the-art quantitative analysis tools and methods. For process design and evaluation, the deliverable of the value- and risk-based performance measurement and management system (VR-PMS) is a set of ranked solutions (i.e. alternative business processes) evaluated against the developed value and risk indicators. The proposed VR-PMS is illustrated with a case study from discrete parts manufacturing but is indeed applicable to a wide range of processes or systems

    18th ICPR paper: INDUSTRIAL PERFORMANCE MEASUREMENT: AN APPROACH BASED ON THE AGGREGATION OF UNIPOLAR OR BIPOLAR EXPRESSIONS

    Get PDF
    International audienceIndustrial performance concerns numerous criteria, often in interaction and of complex nature, not related to one elementary measure. Performance Measurement Systems (PMSs) have been developed to support decision-making for reaching the objectives and launching adequate action plans. PMSs provide thus performance expressions which identify objective satisfaction degrees. Two kinds of performance expressions are useful in industrial problems, according to the scale (unipolar, bipolar) that is used for their definition. Moreover, these expressions generally have to be synthesized for global control purposes, determining an overall performance raises the issue of performance aggregation. To address such an aggregation issue, adequate multi-criteria methods need to be implemented. Most of the approaches proposed in the literature either do not provide explicit mechanisms, or rely on too simple methods. This paper deals with the definition of a performance combination based on mathematical tools, especially the generalized Choquet integral to take into account on the one hand criteria interactions and on the other hand both unipolar and bipolar scales. An application to a PMS for the service rate of a SME producing kitchen elements is used to illustrate the approach

    The Intra-cell layout problem in automated manufacturing systems

    Get PDF
    The problem of the machine layout inside manufacturing cells (intra-cell layout problem) of an automated manufacturing system is addressed in this paper. The solution presented is divided into two main steps. The first step consists of selecting the materials handling system and the possible machine layout type. This procedure is based on the characteristics of : products (which belong to the same product family), their manufacturing processes and machines. An expert system has been developed for this part. The second step consists of evaluating the alternative arrangements of the machines inside the manufacturing cell in order to minimize the intra-cell traffic (costs) while respecting the physical constraints between the machines, between the machines and their environment, product constraints, technological contraints, user preference, etc. This part is performed using operations research algorithms

    Decision-making in the manufacturing environment using a value-risk graph

    Get PDF
    A value-risk based decision-making tool is proposed for performance assessment of manufacturing scenarios. For this purpose, values (i.e. qualitative objective statements) and concerns (i.e. qualitative risk statements) of stakeholders in any given manufacturing scenario are first identified and are made explicit via objective and risk modeling. Next, performance and risk measures are derived from the corresponding objective and risk models to evaluate the scenario under study. After that, upper and lower bounds, and target value is defined for each measure in order to determine goals and constraints for the given scenario. Because of the multidimensionality nature of performance, the identified objectives and risks, and so, their corresponding measures are usually numerous and heterogeneous in nature. These measures are therefore consolidated to obtain a global performance indicator of value and global indicator of risk while keeping in views the inter-criteria influences. Finally, the global indicators are employed to develop minimum acceptable value and maximum acceptable risk for the scenario under study and plotted on the VR-Graph to demarcate zones of “highly desirable”, “feasible”, “and risky” as well as the “unacceptable” one. The global scores of the indicators: (value-risk) pair of the actual scenario is then plotted on the defined VR-Graph to facilitate decision-making by rendering the scenarios’ performance more visible and clearer. The proposed decision-making tool is illustrated with an example from manufacturing setup in the process context but it can be extended to product or systems evaluation

    Towards a Formal Verification of Process Model's Properties - SimplePDL and TOCL Case Study

    Get PDF
    International audienceMore and more, models, through Domain Specific Languages (DSL), tend to be the solution to define complex systems. Expressing properties specific to these metamodels and checking them appear as an urgent need. Until now, the only complete industrial solutions that are available consider structural properties such as the ones that could be expressed in OCL. There are although some attempts on behavioural properties for DSL. This paper addresses a method to specify and then check temporal properties over models. The case study is SimplePDL, a process metamodel. We propose a way to use a temporal extension of OCL, TOCL, to express properties. We specify a models transformation to Petri Nets and LTL formulae for both the process model and its associated temporal properties. We check these properties using a model checker and enrich the model with the analysis results. This work is a first step towards a generic framework to specify and effectively check temporal properties over arbitrary models

    13th International Conference on Modeling, Optimization and Simulation - MOSIM 2020

    Get PDF
    Comité d’organisation: Université Internationale d’Agadir – Agadir (Maroc) Laboratoire Conception Fabrication Commande – Metz (France)Session RS-1 “Simulation et Optimisation” / “Simulation and Optimization” Session RS-2 “Planification des Besoins Matières Pilotée par la Demande” / ”Demand-Driven Material Requirements Planning” Session RS-3 “Ingénierie de Systèmes Basées sur les Modèles” / “Model-Based System Engineering” Session RS-4 “Recherche Opérationnelle en Gestion de Production” / "Operations Research in Production Management" Session RS-5 "Planification des Matières et des Ressources / Planification de la Production” / “Material and Resource Planning / Production Planning" Session RS-6 “Maintenance Industrielle” / “Industrial Maintenance” Session RS-7 "Etudes de Cas Industriels” / “Industrial Case Studies" Session RS-8 "Données de Masse / Analyse de Données” / “Big Data / Data Analytics" Session RS-9 "Gestion des Systèmes de Transport” / “Transportation System Management" Session RS-10 "Economie Circulaire / Développement Durable" / "Circular Economie / Sustainable Development" Session RS-11 "Conception et Gestion des Chaînes Logistiques” / “Supply Chain Design and Management" Session SP-1 “Intelligence Artificielle & Analyse de Données pour la Production 4.0” / “Artificial Intelligence & Data Analytics in Manufacturing 4.0” Session SP-2 “Gestion des Risques en Logistique” / “Risk Management in Logistics” Session SP-3 “Gestion des Risques et Evaluation de Performance” / “Risk Management and Performance Assessment” Session SP-4 "Indicateurs Clés de Performance 4.0 et Dynamique de Prise de Décision” / ”4.0 Key Performance Indicators and Decision-Making Dynamics" Session SP-5 "Logistique Maritime” / “Marine Logistics" Session SP-6 “Territoire et Logistique : Un Système Complexe” / “Territory and Logistics: A Complex System” Session SP-7 "Nouvelles Avancées et Applications de la Logique Floue en Production Durable et en Logistique” / “Recent Advances and Fuzzy-Logic Applications in Sustainable Manufacturing and Logistics" Session SP-8 “Gestion des Soins de Santé” / ”Health Care Management” Session SP-9 “Ingénierie Organisationnelle et Gestion de la Continuité de Service des Systèmes de Santé dans l’Ere de la Transformation Numérique de la Société” / “Organizational Engineering and Management of Business Continuity of Healthcare Systems in the Era of Numerical Society Transformation” Session SP-10 “Planification et Commande de la Production pour l’Industrie 4.0” / “Production Planning and Control for Industry 4.0” Session SP-11 “Optimisation des Systèmes de Production dans le Contexte 4.0 Utilisant l’Amélioration Continue” / “Production System Optimization in 4.0 Context Using Continuous Improvement” Session SP-12 “Défis pour la Conception des Systèmes de Production Cyber-Physiques” / “Challenges for the Design of Cyber Physical Production Systems” Session SP-13 “Production Avisée et Développement Durable” / “Smart Manufacturing and Sustainable Development” Session SP-14 “L’Humain dans l’Usine du Futur” / “Human in the Factory of the Future” Session SP-15 “Ordonnancement et Prévision de Chaînes Logistiques Résilientes” / “Scheduling and Forecasting for Resilient Supply Chains

    Enterprise Architecture Enhanced with Responsibility to Manage Access Right - Case Study in an EU Institution

    Get PDF
    Part 4: Enterprise Architecture and Enterprise ModelingInternational audienceAn innovative approach is proposed for aligning the different layers of the enterprise architecture of a European institution. The main objective of the alignment targets the definition and the assignment of the access rights needed by the employees according to business specifications. This alignment is realized by considering the responsibility and the accountabilities (doing, deciding and advising) of these employees regarding business tasks. Therefore, the responsibility (modeled in a responsibility metamodel) is integrated with the enterprise architecture metamodel using a structured method. The approach is illustrated and validated with a dedicated case study dealing with the definition of access rights assigned to employees involved in the user account provisioning and management processes

    A Property-Driven Approach to Formal Verification of Process Models

    Get PDF
    Enterprise Information Systems, 9th International Conference, ICEIS 2007, Funchal, Madeira, June 12-16, 2007, Revised Selected PapersInternational audienceMore and more, models, through Domain Specific Languages (DSL), tend to be the solution to define complex systems. Expressing properties specific to these metamodels, and checking them, appear as an urgent need. Until now, the only complete industrial solutions that are available consider structural properties such as the ones that could be expressed in OCL. There are although some attempts on behavioural properties for DSL. This paper addresses a method to specify and then check temporal properties over models. The case study is SimplePDL, a process metamodel. We propose a way to use a temporal extension of OCL, TOCL, to express properties. We specify a models transformation to Petri Nets and LTL formulae for both the process model and its associated temporal properties. We check these properties using a model checker and enrich the model with the analysis results. This work is a first step towards a generic framework to specify and effectively check temporal properties over arbitrary models

    Ladder Metamodeling & PLC Program Validation through Time Petri Nets

    Get PDF
    International audienceLadder Diagram (LD) is the most used programming language for Programmable Logical Controllers (PLCs). A PLC is a special purpose industrial computer used to automate industrial processes. Bugs in LD programs are very costly and sometimes are even a threat to human safety. We propose a model driven approach for formal verification of LD programs through model-checking. We provide a metamodel for a subset of the LD language. We define a time Petri net (TPN) semantics for LD programs through an ATL model transformation. Finally, we automatically generate behavioral properties over the LD models as LTL formulae which are then checked over the generated TPN using the model-checkers available in the Tina toolkit. We focus on race condition detection. This work is supported by the topcased project, part of the french cluster Aerospace Valley (granted by the french DGE), cf. http://www.topcased.or
    • …
    corecore